We propose a parameter-free model for estimating the price or valuation of financial derivatives like options, forwards and futures using non-supervised learning networks and Monte Carlo. Although some arbitrage-based pricing formula performs greatly on derivatives pricing like Black-Scholes on option pricing, generative model-based Monte Carlo estimation(GAN-MC) will be more accurate and holds more generalizability when lack of training samples on derivatives, underlying asset's price dynamics are unknown or the no-arbitrage conditions can not be solved analytically. We analyze the variance reduction feature of our model and to validate the potential value of the pricing model, we collect real world market derivatives data and show that our model outperforms other arbitrage-based pricing models and non-parametric machine learning models. For comparison, we estimate the price of derivatives using Black-Scholes model, ordinary least squares, radial basis function networks, multilayer perception regression, projection pursuit regression and Monte Carlo only models.
翻译:我们提出一个无参数模型,用于利用不受监督的学习网络和蒙特卡洛等金融衍生物的价格或估值,例如选择、前期和期货。虽然一些基于套利的定价公式在衍生物定价上表现得非常出色,比如选择定价的黑拼图,但基于基因模型的蒙特卡洛估计(GAN-MC)将更加准确,如果缺乏衍生物、基本资产价格动态的培训样本,或者无法通过分析解决无套利条件,则更加普遍。我们分析了我们模型的减少差异特征,并验证了定价模型的潜在价值,我们收集了真实的世界市场衍生物数据,并表明我们的模型比其他基于套利定价模型和非参数机器学习模型要好。相比之下,我们估计衍生物的价格使用黑拼图模型、普通最低方、辐射基功能网络、多层认知回归、预测回归和仅使用蒙特卡洛模型。