If we have an unbiased estimate of some parameter of interest, then its absolute value is positively biased for the absolute value of the parameter. This bias is large when the signal-to-noise ratio (SNR) is small, and it becomes even larger when we condition on statistical significance; the winner's curse. This is a frequentist motivation for regularization. To determine a suitable amount of shrinkage, we propose to estimate the distribution of the SNR from a large collection or corpus of similar studies and use this as a prior distribution. The wider the scope of the corpus, the less informative the prior, but a wider scope does not necessarily result in a more diffuse prior. We show that the estimation of the prior simplifies if we require that posterior inference is equivariant under linear transformations of the data. We demonstrate our approach with corpora of 86 replication studies from psychology and 178 phase 3 clinical trials. Our suggestion is not intended to be a replacement for a prior based on full information about a particular problem; rather, it represents a familywise choice that should yield better long-term properties than the current default uniform prior, which has led to systematic overestimates of effect sizes and a replication crisis when these inflated estimates have not shown up in later studies.


翻译:如果我们对一些感兴趣的参数作出公正的估计,那么其绝对值就会对参数的绝对值产生偏差。当信号对噪音比率(SNR)小时,这种偏差是很大的,当信号对噪音比率(SNR)小时,这种偏差就很大,当我们根据统计意义而确定数据线性变换条件时,这种偏差就更大了。这是一个常见的正规化动机。为了确定一个适当的缩水量,我们建议从大量或类似研究的大规模收集或堆积中估计SNR的分布情况,并将此用作先前的分发。这个范围越广,以前的信息越少,但范围越广,不一定导致更分散。我们表明,如果我们要求后方的推论在数据线性变中是不可变的,那么对先前的偏差就更大了,那么对前方的估计就更简单了。我们用从心理学的86项复制研究和178个阶段临床试验中展示了我们的方法。我们的建议并不是要根据关于某个特定问题的全部资料来取代先前的传播;而是从家庭角度作出一种选择,这种选择应该产生比目前的默认统一前一种更长期的特性,而不是更长期的特性,在以前的统一之前的改变之后,这种推算并没有导致一种系统的推推算,这种推推推推推推推推推推推推推推推推推推,在这种推后这些推推算这些推,在后,在这种推推推推推推推后,在这种推算结果在这种推推后,在这种推推推推推后,在这种推的推推推推后这些推推推推算结果在这种推后,在这种推推后,在这种推推推推推推推推推推推推推推推推推推推算的推推推后的推推推算结果的推推算的推推算结果的推推推推推推推推推推推推推推推推推推推推推推算结果在这种推推算结果的推算结果是,在这些推推算结果在这些推推算结果在这些推算结果在这些推算结果在这些推推推推推推推推后推后推后推推推推推推推后推后推后推推推推推推推推推推推推推推推推推算

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
机器学习入门的经验与建议
专知会员服务
93+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
已删除
将门创投
3+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年1月14日
Design and Analysis of Switchback Experiments
Arxiv
0+阅读 · 2021年1月14日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关VIP内容
相关资讯
已删除
将门创投
3+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员