We consider an electron in a localized potential submitted to a weak external, timedependent field. In the linear response regime, the response function can be computed using Kubo's formula. In this paper, we consider the numerical approximation of the response function by means of a truncation to a finite region of space. This is necessarily a singular approximation because of the discreteness of the spectrum of the truncated Hamiltonian, and in practice a regularization (smoothing) has to be used. Our results provide error estimates for the response function past the ionization threshold with respect to both the smoothing parameter and the size of the computational domain.
翻译:我们考虑的是向一个薄弱的外部、依赖时间的字段提交的局部潜力电子。在线性响应系统中,响应功能可以使用Kubo的公式计算。在本文中,我们考虑通过将响应功能的数值近似值缩短到有限的空间区域。这必然是一个单一近似值,因为缺电的汉密尔顿人的频谱很分散,实际上必须使用正规化(移动)方法。我们的结果为反应函数的误差估计值超过了光滑参数的离子化阈值和计算域的大小。