This paper presents a Gaussian process (GP) model for estimating piecewise continuous regression functions. In scientific and engineering applications of regression analysis, the underlying regression functions are piecewise continuous in that data follow different continuous regression models for different regions of the data with possible discontinuities between the regions. However, many conventional GP regression approaches are not designed for piecewise regression analysis. We propose a new GP modeling approach for estimating an unknown piecewise continuous regression function. The new GP model seeks for a local GP estimate of an unknown regression function at each test location, using local data neighboring to the test location. To accommodate the possibilities of the local data from different regions, the local data is partitioned into two sides by a local linear boundary, and only the local data belonging to the same side as the test location is used for the regression estimate. This local split works very well when the input regions are bounded by smooth boundaries, so the local linear approximation of the smooth boundaries works well. We estimate the local linear boundary jointly with the other hyperparameters of the GP model, using the maximum likelihood approach. Its computation time is as low as the local GP's time. The superior numerical performance of the proposed approach over the conventional GP modeling approaches is shown using various simulated piecewise regression functions.
翻译:本文展示了用于估算片段连续回归函数的Gossian进程模型。 在回归分析的科学和工程应用中, 基础回归函数具有片段连续性, 因为数据遵循不同区域数据的不同连续回归模型, 且区域之间可能存在不连续的情况。 但是, 许多常规的GP回归方法并不是为小段回归分析设计的。 我们为估算一个未知片段连续回归函数提出了一个新的GP模型模型方法。 新GP模型利用与测试地点相邻的本地数据, 寻求在每个测试地点对未知回归函数进行本地GP估计。 为了适应不同区域当地数据的可能性, 本地数据通过本地线性边界分割成两侧, 并且只有与测试地点相同的地方性数据用于回归估计。 当输入区域受平滑边界的约束时, 当地光度连续回归函数的线性近似值效果很好。 我们利用最大可能性方法, 将本地直线边界与GP模型的其他超常度参数联合估算出一个本地直径直径直线函数。 其计算模型的计算时间低, 因为本地GPGP的精确度方法显示了当地常规回归方法。