In this paper, we follow a data-centric philosophy and propose a novel motion annotation method based on the inherent representativeness of motion data in a given dataset. Specifically, we propose a Representation-based Representativeness Ranking R3 method that ranks all motion data in a given dataset according to their representativeness in a learned motion representation space. We further propose a novel dual-level motion constrastive learning method to learn the motion representation space in a more informative way. Thanks to its high efficiency, our method is particularly responsive to frequent requirements change and enables agile development of motion annotation models. Experimental results on the HDM05 dataset against state-of-the-art methods demonstrate the superiority of our method.
翻译:本文采用以数据为中心的哲学,提出了一种基于给定数据集中运动数据内在代表性的新型运动注释方法。具体来说,我们提出了一种基于表征性排名R3的方法,根据在学习的运动表征空间中的代表性对给定数据集中的所有运动数据进行排序。我们进一步提出了一种新颖的双层运动对比学习方法,以更具信息性的方式学习运动表征空间。由于其高效性,我们的方法特别适应经常的需求变更,并使得运动注释模型的敏捷开发成为可能。针对HDM05数据集的实验结果与最先进的方法进行的比较表明了我们方法卓越的性能。