We consider the problem of fair allocation of indivisible items to agents that have arbitrary entitlements to the items. Every agent $i$ has a valuation function $v_i$ and an entitlement $b_i$, where entitlements sum up to~1. Which allocation should one choose in situations in which agents fail to agree on one acceptable fairness notion? We study this problem in the case in which each agent focuses on the value she gets, and fairness notions are restricted to be {\em share based}. A {\em share} $s$ is an function that maps every $(v_i,b_i)$ to a value $s(v_i,b_i)$, representing the minimal value $i$ should get, and $s$ is {\em feasible} if it is always possible to give every agent $i$ value of at least $s(v_i,b_i)$. Our main result is that for additive valuations over goods there is an allocation that gives every agent at least half her share value, regardless of which feasible share-based fairness notion the agent wishes to use. Moreover, the ratio of half is best possible. More generally, we provide tight characterizations of what can be achieved, both ex-post (as single allocations) and ex-ante (as expected values of distributions of allocations), both for goods and for chores. We also show that for chores one can achieve the ex-ante and ex-post guarantees simultaneously (a ``best of both world" result), whereas for goods one cannot.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2024年7月2日
Arxiv
0+阅读 · 2024年7月2日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员