The past two decades have witnessed significant success in applying columnar storage to data warehousing and analytics. However, the rapid growth of machine learning poses new challenges. This paper presents Bullion, a columnar storage system tailored for machine learning workloads. Bullion addresses the complexities of data compliance, optimizes the encoding of long sequence sparse features, efficiently manages wide-table projections, introduces feature quantization in storage, enables quality-aware sequential reads for multimodal training data, and provides a comprehensive cascading encoding framework that unifies diverse encoding schemes through modular, composable interfaces. By aligning with the evolving requirements of ML applications, Bullion facilitates the application of columnar storage and processing to modern application scenarios such as those within advertising, recommendation systems, and Generative AI. Preliminary experimental results and theoretical analysis demonstrate Bullion's improved ability to deliver strong performance in the face of the unique demands of machine learning workloads compared to existing columnar storage solutions. Bullion significantly reduces I/O costs for deletion compliance, achieves substantial storage savings with its optimized encoding scheme for sparse features, and improves metadata parsing speed for wide-table projections. These advancements enable Bullion to become an important component in the future of machine learning infrastructure, enabling organizations to efficiently manage and process the massive volumes of data required for training and inference in modern AI applications.
翻译:暂无翻译