In this manuscript, we study the properties of a family of second-order differential equations with damping, its discretizations and their connections with accelerated optimization algorithms for $m$-strongly convex and $L$-smooth functions. In particular, using the Linear Matrix Inequality LMI framework developed by \emph{Fazlyab et. al. $(2018)$}, we derive analytically a (discrete) Lyapunov function for a two-parameter family of Nesterov optimization methods, which allows for the complete characterization of their convergence rate. In the appropriate limit, this family of methods may be seen as a discretization of a family of second-order ordinary differential equations for which we construct(continuous) Lyapunov functions by means of the LMI framework. The continuous Lyapunov functions may alternatively, be obtained by studying the limiting behaviour of their discrete counterparts. Finally, we show that the majority of typical discretizations of the family of ODEs, such as the Heavy ball method, do not possess Lyapunov functions with properties similar to those of the Lyapunov function constructed here for the Nesterov method.


翻译:在此手稿中,我们研究二阶差异方程式家族的特性,这些二阶差异方程式带有阻力、离散性及其与美元和美元均线函数加速优化算法的连接。特别是,我们使用由 emph{Fazlyab 等人(2018美元) 开发的线性矩阵不平等LMI 框架,从分析角度为Nesterov 优化方法的两等分式家族的Lyapunov 函数(分解) Lyapunov 函数,这些功能允许对其汇合率进行完整描述。在适当的限度内,这些方法的组合可被视为我们通过 LMI 框架构建(连续) Lyapunov 函数的二阶普通差异方程组合的离散性普通方程式的离散化。 连续的Lyapunov 函数也可以通过研究其离散对应方的限制性行为获得。 最后,我们表明,ODs家族的典型离分解性功能,例如重球法,并不拥有与这里构建的Lyapsteunov 函数类似的特性的Lyapunov 。

0
下载
关闭预览

相关内容

Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Optimization for deep learning: theory and algorithms
Arxiv
104+阅读 · 2019年12月19日
Arxiv
6+阅读 · 2018年10月3日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员