We show that, using the Crouzeix-Raviart scheme, a cheap algebraic transformation, applied to the coupled velocity-pressure linear systems issued from the transient or steady Stokes or Navier-Stokes problems, leads to a linear system only involving as many auxiliary variables as the velocity components. This linear system, which is symmetric positive definite in the case of the transient Stokes problem and symmetric invertible in the case of the steady Stokes problem, with the same stencil as that of the velocity matrix, provides the exact solution of the initial coupled linear system. Numerical results show the increase of performance when applying direct or iterative solvers to the resolution of these linear systems.
翻译:我们显示,使用Crouzix-Raviart计划,一种廉价的代数变换,适用于由瞬态或稳定的斯托克斯或纳维埃-斯托克斯问题或纳维耶-斯托克斯问题发行的同步速度-压力线性系统,导致一个仅涉及与速度组件一样多的辅助变量的线性系统。这个线性系统,在瞬态斯托克斯问题的情况下是正对数肯定的,在稳定斯托克斯问题的情况下是可逆的,与速度矩阵一样的急态,提供了初始的同步线性系统的确切解决办法。数字结果显示,在将这些直线系统的解决办法应用直接或迭代解决器时,其性能会提高。