Multi-domain learning (MDL) refers to learning a set of models simultaneously, where each model is specialized to perform a task in a particular domain. Generally, a high labeling effort is required in MDL, as data needs to be labeled by human experts for every domain. Active learning (AL) can be utilized in MDL to reduce the labeling effort by only using the most informative data. The resultant paradigm is termed multi-domain active learning (MDAL). In this work, we provide an exhaustive literature review for MDAL on the relevant fields, including AL, cross-domain information sharing schemes, and cross-domain instance evaluation approaches. It is found that the few studies which have been directly conducted on MDAL cannot serve as off-the-shelf solutions on more general MDAL tasks. To fill this gap, we construct a pipeline of MDAL and present a comprehensive comparative study of thirty different algorithms, which are established by combining six representative MDL models and five commonly used AL strategies. We evaluate the algorithms on six datasets involving textual and visual classification tasks. In most cases, AL brings notable improvements to MDL, and the naive best vs. second best (BvSB) Uncertainty strategy can perform competitively with the state-of-the-art AL strategies. Besides, BvSB with the MAN model can consistently achieve top or above-average performance on all the datasets. Furthermore, we qualitatively analyze the behaviors of the well-performed strategies and models, shedding light on their superior performance in the comparison. Finally, we recommend to use BvSB with the MAN model in the application of MDAL due to their good performance in the experiments.


翻译:多域学习( MDL) 指的是同时学习一组模型, 每一模型都专门用于执行特定领域的任务。 一般来说, MDL 需要高标签工作, 因为数据需要由人类专家为每个领域贴上标签。 MDL 可以使用积极学习( AL) 来减少标签工作, 仅使用信息量最大的数据。 由此产生的范例被称为多域积极学习( MDL ) 。 在这项工作中, 我们为MDAL 提供有关领域的完整文献审查, 包括AL、 跨域信息共享计划和跨域实例评价方法。 发现, MDL 直接进行的一些研究不能作为所有领域都使用的现成解决方案。 为了填补这一空白, 我们建了一个MDAL 管道, 并对30种不同的算法进行了全面的比较研究, 它们是将6种具有代表性的MDL 模型和5种常用的模型 AL 。 我们评估了六种包含文本和视觉分类任务的数据集的算法。 在多数情况下, AL 直接进行的明显改进了MDL, 其高级应用的高级性战略, 以及 MANS B 的SB 。 最佳的SB, 和 最佳的SB 和最高级性能 。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年7月20日
Arxiv
0+阅读 · 2022年7月20日
Arxiv
12+阅读 · 2021年8月19日
Learning in the Frequency Domain
Arxiv
11+阅读 · 2020年3月12日
A Comprehensive Survey on Transfer Learning
Arxiv
121+阅读 · 2019年11月7日
VIP会员
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员