This paper develops and analyzes an accelerated proximal descent method for finding stationary points of nonconvex composite optimization problems. The objective function is of the form $f+h$ where $h$ is a proper closed convex function, $f$ is a differentiable function on the domain of $h$, and $\nabla f$ is Lipschitz continuous on the domain of $h$. The main advantage of this method is that it is "curvature-free" in the sense that it does not require knowledge of the Lipschitz constant of $\nabla f$ or of any global topological properties of $f$. It is shown that the proposed method can obtain a $\rho$-approximate stationary point with iteration complexity bounds that are optimal, up to logarithmic terms over $\rho$, in both the convex and nonconvex settings. Some discussion is also given about how the proposed method can be leveraged in other existing optimization frameworks, such as min-max smoothing and penalty frameworks for constrained programming, to create more specialized curvature-free methods. Finally, numerical experiments on a set of nonconvex quadratic semidefinite programming problems are given to support the practical viability of the method.


翻译:本文开发并分析一种快速的近似下降方法, 用于查找非convex复合优化问题的固定点。 目标功能为 $+h$, 其形式为 $+h$, 美元为 适当的封闭锥形函数, $f$ 是 $$ 域上的一个不同功能, $\ nabla f$ 是 Lipschitz 在 $ 域上持续 。 此方法的主要优点在于它“ 纯度无”, 因为它不需要知道 Lipschitz 常数$\ nabla f$ 或任何全球地貌特性$f$ 。 显示, 拟议的方法可以取得 $\ rho$- 近似的固定点, 且在 $ 美元 域内, 和 美元 。 在 convex 和非 convex 设置中,, 其主要的优点是, 如何在其它现有优化框架中, 如 软质平滑度平滑度和惩罚框架,, 以 节度 节度 节度 度 设置, 建立 更专业的 度 度 度 度 度 度 度 度 度 度 的 度 度 度 度 度 度 度 度 的 度 度 方法, 确定 的 度 的 的 的 度 。 最后定 度 度 。

0
下载
关闭预览

相关内容

专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
161+阅读 · 2020年1月16日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年7月14日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员