Conventional magneto-static finite element analysis of electrical machine models is time-consuming and computationally expensive. Since each machine topology has a distinct set of parameters, design optimization is commonly performed independently. This paper presents a novel method for predicting Key Performance Indicators (KPIs) of differently parameterized electrical machine topologies at the same time by mapping a high dimensional integrated design parameters in a lower dimensional latent space using a variational autoencoder. After training, via a latent space, the decoder and multi-layer neural network will function as meta-models for sampling new designs and predicting associated KPIs, respectively. This enables parameter-based concurrent multi-topology optimization.
翻译:对电机模型进行常规磁静态微量元素分析耗时且计算费用昂贵,因为每个机器形态学都有一套不同的参数,设计优化通常独立进行,本文介绍了一种新颖的方法,用以预测不同参数化电机形态的关键性能指标(KPIs),同时利用变异自动编码器绘制低维潜伏空间的高维集成设计参数。在通过潜伏空间进行训练后,脱coder和多层神经网络将分别作为取样新设计和预测相关KIPs的元模型发挥作用,从而能够实现基于参数的并行多地形优化。