In this contribution, a wave equation with a time-dependent variable-order fractional damping term and a nonlinear source is considered. Avoiding the circumstances of expressing the nonlinear variable-order fractional wave equations via closed-form expressions in terms of special functions, we investigate the existence and uniqueness of this problem with Rothe's method. First, the weak formulation for the considered wave problem is proposed. Then, the uniqueness of a solution is established by employing Gr\"onwall's lemma. The Rothe scheme's basic idea is to use Rothe functions to extend the solutions on single-time steps over the entire time frame. Inspired by that, we next introduce a uniform mesh time-discrete scheme based on a discrete convolution approximation in the backward sense. By applying some reasonable assumptions to the given data, we can predict a priori estimates for the time-discrete solution. Employing these estimates side by side with Rothe functions leads to proof of the solution's existence over the whole time interval. Finally, the full discretisation of the problem is introduced by invoking Galerkin spectral techniques in the spatial direction, and numerical examples are given.


翻译:在此贡献中, 将考虑一个有时间依赖的可变顺序分断线术语和非线性源的波方方程式。 避免通过特殊功能的封闭式表达形式表达非线性可变顺序分波方程式的情况, 我们调查这一问题的存在和独特性, 使用Rothe 的方法。 首先, 提出被考虑的波问题的微弱配方。 然后, 通过使用 Gr\" onwail' lemmma 来确定一个解决方案的独特性。 Rothe 方案的基本想法是使用 Rothe 函数将单时间步骤的解决方案扩展至整个时间框架。 受此启发, 下一步我们引入一个基于后向感的离散变相近点的统一网状时间分解方案。 通过对给定的数据应用一些合理的假设, 我们可以预测时间分解解决方案的预估值。 将这些估算与 Rothe 函数的侧面使用, 可以证明解决方案在整个时间间隔期间的存在。 最后, 问题的全部分解是通过在空间方向中引用 Galerkin 的光谱技术, 和给定的示例。</s>

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
71+阅读 · 2022年6月28日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
70+阅读 · 2020年8月2日
专知会员服务
158+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
22+阅读 · 2022年2月4日
VIP会员
相关资讯
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员