Continual learning is the problem of learning and retaining knowledge through time over multiple tasks and environments. Research has primarily focused on the incremental classification setting, where new tasks/classes are added at discrete time intervals. Such an "offline" setting does not evaluate the ability of agents to learn effectively and efficiently, since an agent can perform multiple learning epochs without any time limitation when a task is added. We argue that "online" continual learning, where data is a single continuous stream without task boundaries, enables evaluating both information retention and online learning efficacy. In online continual learning, each incoming small batch of data is first used for testing and then added to the training set, making the problem truly online. Trained models are later evaluated on historical data to assess information retention. We introduce a new benchmark for online continual visual learning that exhibits large scale and natural distribution shifts. Through a large-scale analysis, we identify critical and previously unobserved phenomena of gradient-based optimization in continual learning, and propose effective strategies for improving gradient-based online continual learning with real data. The source code and dataset are available in: https://github.com/IntelLabs/continuallearning.
翻译:持续学习是通过多种任务和环境的一段时间学习和保留知识的问题。研究主要侧重于递增分类设置,在这种设置中,在离散的时间间隔内增加新的任务/班级。这种“离线”设置并不评价代理商有效和高效学习的能力,因为代理商在增加任务时可以执行多个学习时代而没有任何时间限制。我们争辩说,“在线”持续学习,即数据是单一的连续流,没有任务界限,能够评价信息保留和在线学习的功效。在网上持续学习中,收到的每一小批数据首先用于测试,然后添加到培训组中,使问题真正在线化。后来,对历史数据进行评估,对经过培训的模型进行评价,以评估信息保留情况。我们为在线持续视觉学习引入新的基准,显示大规模和自然分布变化。我们通过大规模分析,确定在持续学习中基于梯度优化的关键和以前没有观测到的现象,并提议有效的战略,用真实数据改进基于梯度的在线持续学习。源代码和数据集载于:https://github.com/IntelLabs/contualinleinleinleinleinlear。