While imitation learning for vision based autonomous mobile robot navigation has recently received a great deal of attention in the research community, existing approaches typically require state action demonstrations that were gathered using the deployment platform. However, what if one cannot easily outfit their platform to record these demonstration signals or worse yet the demonstrator does not have access to the platform at all? Is imitation learning for vision based autonomous navigation even possible in such scenarios? In this work, we hypothesize that the answer is yes and that recent ideas from the Imitation from Observation (IfO) literature can be brought to bear such that a robot can learn to navigate using only ego centric video collected by a demonstrator, even in the presence of viewpoint mismatch. To this end, we introduce a new algorithm, Visual Observation only Imitation Learning for Autonomous navigation (VOILA), that can successfully learn navigation policies from a single video demonstration collected from a physically different agent. We evaluate VOILA in the photorealistic AirSim simulator and show that VOILA not only successfully imitates the expert, but that it also learns navigation policies that can generalize to novel environments. Further, we demonstrate the effectiveness of VOILA in a real world setting by showing that it allows a wheeled Jackal robot to successfully imitate a human walking in an environment using a video recorded using a mobile phone camera.


翻译:以视觉为基础的自主移动机器人导航的模仿学习最近引起了研究界的极大关注,但现有方法通常需要使用部署平台收集的州行动演示。然而,如果人们不能轻易地安装平台来记录这些演示信号,或者更糟的是示威者根本无法进入平台呢?在这样的情况下,模拟学习以视觉为基础的自主导航是否甚至有可能?在这项工作中,我们假设答案是肯定的,观察(IfO)文献的仿照(IfO)的最新想法可以让机器人学会只使用由示范者收集的自我中心视频来导航,即使存在观点不匹配的情况。为此,我们引入一种新的算法,即视觉观察只进行自动导航的模仿学习(VOILA),它能够成功地从从从一个物理上不同的代理人收集的单一视频演示中学习导航政策。我们用光动的AirSimSim模拟器对VILA进行了评价,并表明VOIA不仅能够成功地模仿专家,而且它也能学习能够向新环境普及的自我中心导航政策。我们进一步展示了在使用一个真实的机器人环境中的视频环境。

0
下载
关闭预览

相关内容

【DeepMind】强化学习教程,83页ppt
专知会员服务
154+阅读 · 2020年8月7日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
深度强化学习策略梯度教程,53页ppt
专知会员服务
182+阅读 · 2020年2月1日
【强化学习资源集合】Awesome Reinforcement Learning
专知会员服务
95+阅读 · 2019年12月23日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
ICRA 2019 论文速览 | 基于Deep Learning 的SLAM
计算机视觉life
41+阅读 · 2019年7月22日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
12+阅读 · 2018年4月27日
机器人开发库软件大列表
专知
10+阅读 · 2018年3月18日
【推荐】直接未来预测:增强学习监督学习
机器学习研究会
6+阅读 · 2017年11月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
8+阅读 · 2021年11月14日
Arxiv
24+阅读 · 2021年6月25日
VIP会员
相关VIP内容
相关资讯
ICRA 2019 论文速览 | 基于Deep Learning 的SLAM
计算机视觉life
41+阅读 · 2019年7月22日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
12+阅读 · 2018年4月27日
机器人开发库软件大列表
专知
10+阅读 · 2018年3月18日
【推荐】直接未来预测:增强学习监督学习
机器学习研究会
6+阅读 · 2017年11月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员