Autonomous vehicles (AVs) must interact with a diverse set of human drivers in heterogeneous geographic areas. Ideally, fleets of AVs should share trajectory data to continually re-train and improve trajectory forecasting models from collective experience using cloud-based distributed learning. At the same time, these robots should ideally avoid uploading raw driver interaction data in order to protect proprietary policies (when sharing insights with other companies) or protect driver privacy from insurance companies. Federated learning (FL) is a popular mechanism to learn models in cloud servers from diverse users without divulging private local data. However, FL is often not robust -- it learns sub-optimal models when user data comes from highly heterogeneous distributions, which is a key hallmark of human-robot interactions. In this paper, we present a novel variant of personalized FL to specialize robust robot learning models to diverse user distributions. Our algorithm outperforms standard FL benchmarks by up to 2x in real user studies that we conducted where human-operated vehicles must gracefully merge lanes with simulated AVs in the standard CARLA and CARLO AV simulators.
翻译:自主飞行器(AVs)必须与不同地理区域的各种人类驱动器互动。理想的情况是,AV的车队应分享轨迹数据,以便不断再培训和改进利用基于云的分布式学习的集体经验的轨迹预测模型。同时,这些机器人最好避免上传原始驱动器互动数据,以保护专利政策(当与其他公司分享见解时)或保护保险公司对驾驶员的隐私。联邦学习(FL)是一个受欢迎的机制,用于从不同用户的云服务器中学习模型,而不泄露私人本地数据。然而,FL往往不健全 -- -- 当用户数据来自高度多元分布时,它会学习亚最佳模型,这是人类机器人相互作用的关键标志。在本文中,我们提出了一个个性化的FL新模式,专门将稳健的机器人学习模型应用于不同的用户分布。我们的算法超越了标准FL基准,在实际用户研究中,我们进行了2x次的用户研究,其中人类操作的车辆必须与标准CARLA和CARLO AVimulaters模拟的A相容合。