In this paper, we present a complete autonomous navigation pipeline for unstructured outdoor environments. The main contribution of this work is on the path planning module, which we divided into two main categories: Global Path Planning (GPP) and Local Path Planning (LPP). For environment representation, instead of complex and heavy grid maps, the GPP layer uses road network information obtained directly from OpenStreetMaps (OSM). In the LPP layer, we use a novel Naive-Valley-Path (NVP) method to generate a local path avoiding obstacles in the road in real-time. This approach uses a naive representation of the local environment using a LiDAR sensor. Also, it uses a naive optimization that exploits the concept of "valley" areas in the cost map. We demonstrate the system's robustness experimentally in our research platform BLUE, driving autonomously across the University of Alicante Scientific Park for more than 20 km in a 12.33 ha area.
翻译:在本文中,我们为没有结构的户外环境展示了完整的自主导航管道。这项工作的主要贡献在于路径规划模块,我们将其分为两大类:全球路径规划(GPP)和地方路径规划(LPP)。对于环境代表,GPP层使用直接从OpenStreetMaps(OSM)获得的公路网络信息,而不是复杂而重的网格图。在LP层,我们使用新颖的Naive-Valley-Path(NVP)方法来生成一条避免道路实时障碍的本地路径。这个方法利用LIDAR传感器对当地环境进行天真的描述。此外,它利用成本图中的“Valley”地区的概念来天真地优化。我们在我们的研究平台BLUE中展示了该系统的稳健性,在12.33公顷的面积内,在阿利肯特大学科学公园上自主驾驶超过20公里。