We present Self-Classifier -- a novel self-supervised end-to-end classification learning approach. Self-Classifier learns labels and representations simultaneously in a single-stage end-to-end manner by optimizing for same-class prediction of two augmented views of the same sample. To guarantee non-degenerate solutions (i.e., solutions where all labels are assigned to the same class) we propose a mathematically motivated variant of the cross-entropy loss that has a uniform prior asserted on the predicted labels. In our theoretical analysis we prove that degenerate solutions are not in the set of optimal solutions of our approach. Self-Classifier is simple to implement and scalable. Unlike other popular unsupervised classification and contrastive representation learning approaches, it does not require any form of pre-training, expectation maximization, pseudo-labelling, external clustering, a second network, stop-gradient operation or negative pairs. Despite its simplicity, our approach sets a new state of the art for unsupervised classification of ImageNet; and even achieves comparable to state-of-the-art results for unsupervised representation learning. Code: https://github.com/elad-amrani/self-classifier


翻译:我们提出自定义解析器 -- -- 一种全新的自我监督端到端分类学习方法。自定义解析器以单阶段端到端的方式同时学习标签和表达方式,通过优化同一样本中两种增强的视角的同级预测而同时学习标签和表达方式。为了保证非变性解决方案(即所有标签都分配给同一类别的解决办法),我们提议了一个具有数学动机的跨物种损失变量,该变量先前在预测的标签上坚持统一。在我们的理论分析中,我们证明退化的解决方案并不是我们的方法的最佳解决方案组合。自定义解析器容易实施和可扩展。不同于其他流行的未经监督的分类和对比代表性学习方法,它并不要求任何形式的预培训、预期最大化、伪标签、外部集群、第二个网络、中继操作或负对等。尽管其简单,但我们的方法为图像网络的不统一分类设置了新的艺术状态;甚至实现与州/州级/州级的分类/州级的分类结果可比较。

2
下载
关闭预览

相关内容

【2022新书】机器学习基础,225页pdf,Machine Learning The Basics
【google】监督对比学习,Supervised Contrastive Learning
专知会员服务
32+阅读 · 2020年4月23日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
Graph: 表现再差,也不进行Pre-Training? Self-Supervised Learning真香!
机器学习与推荐算法
3+阅读 · 2020年6月30日
Graph Neural Network(GNN)最全资源整理分享
深度学习与NLP
339+阅读 · 2019年7月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Network Embedding 指南
专知
21+阅读 · 2018年8月13日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
VIP会员
相关资讯
Graph: 表现再差,也不进行Pre-Training? Self-Supervised Learning真香!
机器学习与推荐算法
3+阅读 · 2020年6月30日
Graph Neural Network(GNN)最全资源整理分享
深度学习与NLP
339+阅读 · 2019年7月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Network Embedding 指南
专知
21+阅读 · 2018年8月13日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Top
微信扫码咨询专知VIP会员