This work investigates multiple testing from the point of view of minimax separation rates in the sparse sequence model, when the testing risk is measured as the sum FDR+FNR (False Discovery Rate plus False Negative Rate). First using the popular beta-min separation condition, with all nonzero signals separated from $0$ by at least some amount, we determine the sharp minimax testing risk asymptotically and thereby explicitly describe the transition from "achievable multiple testing with vanishing risk" to "impossible multiple testing". Adaptive multiple testing procedures achieving the corresponding optimal boundary are provided: the Benjamini--Hochberg procedure with properly tuned parameter, and an empirical Bayes $\ell$-value ('local FDR') procedure. We prove that the FDR and FNR have non-symmetric contributions to the testing risk for most procedures, the FNR part being dominant at the boundary. The optimal multiple testing boundary is then investigated for classes of arbitrary sparse signals. A number of extensions, including results for classification losses, are also discussed.


翻译:这项工作从稀有序列模型中小型最大分解率的角度对多重测试进行调查,当测试风险被测量为FDR+FNR总和(False发现率和假负率)时。首先使用流行的β-毫分分分离条件,将所有非零信号至少分解为0美元,我们确定微小最大测试风险的偶然性,从而明确描述从“消失风险的可行多重测试”向“可能的多重测试”的过渡。提供了达到相应最佳边界的适应性多重测试程序:Benjani-Hochberg程序,具有适当调控参数,以及实证性Bayes $@ell$-value (“当地FDR”)程序。我们证明,FDR和FNR对大多数程序的测试风险具有非对称性贡献,FNR部分在边界处于主导地位。然后对任意稀有信号的类别进行最佳多测试边界调查。还讨论了一系列扩展,包括分类损失的结果。

0
下载
关闭预览

相关内容

【图与几何深度学习】Graph and geometric deep learning,49页ppt
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
50+阅读 · 2021年1月20日
Transformer文本分类代码
专知会员服务
117+阅读 · 2020年2月3日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
A unified framework for bandit multiple testing
Arxiv
0+阅读 · 2021年11月17日
Arxiv
5+阅读 · 2020年6月16日
Arxiv
5+阅读 · 2017年12月14日
VIP会员
相关资讯
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员