Deep neural networks (DNNs) for medical images are extremely vulnerable to adversarial examples (AEs), which poses security concerns on clinical decision making. Luckily, medical AEs are also easy to detect in hierarchical feature space per our study herein. To better understand this phenomenon, we thoroughly investigate the intrinsic characteristic of medical AEs in feature space, providing both empirical evidence and theoretical explanations for the question: why are medical adversarial attacks easy to detect? We first perform a stress test to reveal the vulnerability of deep representations of medical images, in contrast to natural images. We then theoretically prove that typical adversarial attacks to binary disease diagnosis network manipulate the prediction by continuously optimizing the vulnerable representations in a fixed direction, resulting in outlier features that make medical AEs easy to detect. However, this vulnerability can also be exploited to hide the AEs in the feature space. We propose a novel hierarchical feature constraint (HFC) as an add-on to existing adversarial attacks, which encourages the hiding of the adversarial representation within the normal feature distribution. We evaluate the proposed method on two public medical image datasets, namely {Fundoscopy} and {Chest X-Ray}. Experimental results demonstrate the superiority of our adversarial attack method as it bypasses an array of state-of-the-art adversarial detectors more easily than competing attack methods, supporting that the great vulnerability of medical features allows an attacker more room to manipulate the adversarial representations.
翻译:医疗图像的深心神经网络(DNNS)极易受到对抗性例子(AEs)的伤害,这些例子在临床决策中引起了安全问题。幸运的是,医学AE在本文的研究中也很容易在等级特征空间中检测到。为了更好地了解这一现象,我们彻底调查了功能空间中医疗AE的内在特征,提供了经验证据和理论解释:为什么医疗对立性攻击容易检测?我们首先进行压力测试,以揭示与自然图像相反的医学图像的深度表现的脆弱性。然后我们从理论上证明,典型的对二元疾病诊断网络的对立性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性