The Deep Neural Networks are vulnerable toadversarial exam-ples(Figure 1), making the DNNs-based systems collapsed byadding the inconspicuous perturbations to the images. Most of the existing works for adversarial attack are gradient-based and suf-fer from the latency efficiencies and the load on GPU memory. Thegenerative-based adversarial attacks can get rid of this limitation,and some relative works propose the approaches based on GAN.However, suffering from the difficulty of the convergence of train-ing a GAN, the adversarial examples have either bad attack abilityor bad visual quality. In this work, we find that the discriminatorcould be not necessary for generative-based adversarial attack, andpropose theSymmetric Saliency-based Auto-Encoder (SSAE)to generate the perturbations, which is composed of the saliencymap module and the angle-norm disentanglement of the featuresmodule. The advantage of our proposed method lies in that it is notdepending on discriminator, and uses the generative saliency map to pay more attention to label-relevant regions. The extensive exper-iments among the various tasks, datasets, and models demonstratethat the adversarial examples generated by SSAE not only make thewidely-used models collapse, but also achieves good visual quality.The code is available at https://github.com/BravoLu/SSAE.
翻译:深神经网络很容易受到对抗性测试(图1)的影响,使基于 DNNs 的系统因图像上不清晰的扰动而崩溃。 现有的对抗性攻击的多数工作都是基于梯度的, 并且从潜伏效率以及 GPU 内存的负负值中产生软化效应。 基于基因的对抗性攻击可以消除这一限制, 一些相对的工程提出基于 GAN 的方法。 However, 由于培训GAN 的融合困难, 对抗性的例子要么是攻击能力差, 要么视觉质量差。 在这项工作中, 我们发现歧视者可能不是基于基因化的对抗性攻击所必要的, 而现有的对抗性攻击的多数工作都是基于梯度的精度的精度, 使基于Aut- Encoder (SSE) 的匹配性色素性攻击能够产生干扰, 由显著的细胞细胞模块和特征的角向下调。 我们拟议方法的优点在于它不是在歧视性上的变化性能力差,而是视觉性强的精度范围图中, 也用直观性精度的精确度地图来显示与数据相关的模型。