We describe two constructions of lattice packings of $ n $-dimensional cross-polytopes ($ \ell_1 $ balls) whose density exceeds that of the best prior construction by a factor of $ 2^{\frac{n}{\ln n}(1 + o(1))} $ when $ n \to \infty $. The first family of lattices is explicit and is obtained by applying Construction A to a class of Reed-Solomon codes. The second family has subexponential construction complexity and is based on the notion of Sidon sets in finite Abelian groups. The construction based on Sidon sets also gives the highest known asymptotic density of packing discrete cross-polytopes of fixed radius $ r \geqslant 3 $ in $ \mathbb{Z}^n $.
翻译:我们描述两组的衬垫包装,其密度超过先前最佳构造值的2 ⁇ frac{nun n}(1 + o(1))美元。第一组拉托克是清晰的,通过将建筑A应用到Reed-Solomon编码的类别获得。第二组的构造复杂度低于爆炸性,并且以有限的Aelbian组群中的Sidon套件概念为基础。以Sidon组群为基础的建筑也提供了固定半径为 r\ geqslant 3 美元固定半径的离散跨面包装最高已知的孔密度。