Hulls of linear codes have a vital effect in coding theory. Arbitrary-dimensional hull and one-dimensional hull are helpful for the construction of EAQECCs and determining the complexity of some algorithms etc., respectively. In this paper, we present some constructions from generalized Reed-Solomn codes and extend generalized Reed-Solomn codes, and determine the dimension of their hulls. Then, we get five new MDS codes with new parameters and we also give a more systematic and convenient method to construct two classes of codes that have already appeared before. And finally, we construct EAQECCs and EAQMDS codes using five classes of these seven MDS codes with arbitrary hulls, and the remaining two classes have one-dimensional hulls.
翻译:线性代码的外壳在编码理论中具有重要影响。 任意尺寸的船体和一维的船体分别有助于构建EAQECC和确定某些算法的复杂性等。 在本文中,我们介绍了通用Reed-Solomn代码的一些构造,并扩展了通用Reed-Solomn代码,并确定了其船体的尺寸。然后,我们获得了5个带有新参数的新MDS代码,我们还给出了一个更系统、更方便的方法来构建此前已经出现的两类代码。 最后,我们用这7个带有任意船体的MDS代码的5个类别来构建EAQECC和EAQMDS代码,其余2个类别有1维的船体。