Data assimilation is the process of fusing information from imperfect computer simulations with noisy, sparse measurements of reality to obtain improved estimates of the state or parameters of a dynamical system of interest. The data assimilation procedures used in many geoscience applications, such as numerical weather forecasting, are variants of the our-dimensional variational (4D-Var) algorithm. The cost of solving the underlying 4D-Var optimization problem is dominated by the cost of repeated forward and adjoint model runs. This motivates substituting the evaluations of the physical model and its adjoint by fast, approximate surrogate models. Neural networks offer a promising approach for the data-driven creation of surrogate models. The accuracy of the surrogate 4D-Var solution depends on the accuracy with each the surrogate captures both the forward and the adjoint model dynamics. We formulate and analyze several approaches to incorporate adjoint information into the construction of neural network surrogates. The resulting networks are tested on unseen data and in a sequential data assimilation problem using the Lorenz-63 system. Surrogates constructed using adjoint information demonstrate superior performance on the 4D-Var data assimilation problem compared to a standard neural network surrogate that uses only forward dynamics information.
翻译:数据同化是一个过程,通过不完善的计算机模拟,用杂乱、稀少的现实测量,将信息从不完善的计算机模拟中阻断,以获得对动态利益系统状态或参数的更好估计。许多地球科学应用中所使用的数据同化程序,如数字天气预报,是我们维维变(4D-Var)算法的变体。解决4D-Var优化基本问题的成本主要在于反复前向和连接模型运行的成本。这促使用快速、近似代孕模型取代对物理模型的评价及其相联的数据同化问题。神经网络为数据驱动的代孕模型的创建提供了一种很有希望的方法。代孕4D-Var解决方案的准确性取决于每个代孕(4D-Var)同时捕捉前方和双向模型动态的准确性。我们制定并分析若干方法,将连接信息纳入神经网络代孕模型的构造中。由此形成的网络在利用Lorenz-63系统以连续的数据同化问题进行测试。使用自动信息构建的Surrogateates展示了4D-Var数据同化网络的高级性动态特性,而仅比于一个标准同化网络。