In two-party machine learning prediction services, the client's goal is to query a remote server's trained machine learning model to perform neural network inference in some application domain. However, sensitive information can be obtained during this process by either the client or the server, leading to potential collection, unauthorized secondary use, and inappropriate access to personal information. These security concerns have given rise to Private Inference (PI), in which both the client's personal data and the server's trained model are kept confidential. State-of-the-art PI protocols consist of a pre-processing or offline phase and an online phase that combine several cryptographic primitives: Homomorphic Encryption (HE), Secret Sharing (SS), Garbled Circuits (GC), and Oblivious Transfer (OT). Despite the need and recent performance improvements, PI remains largely arcane today and is too slow for practical use. This paper addresses PI's shortcomings with a detailed characterization of a standard high-performance protocol to build foundational knowledge and intuition in the systems community. Our characterization pinpoints all sources of inefficiency -- compute, communication, and storage. In contrast to prior work, we consider inference request arrival rates rather than studying individual inferences in isolation and we find that the pre-processing phase cannot be ignored and is often incurred online as there is insufficient downtime to hide pre-compute latency. Finally, we leverage insights from our characterization and propose three optimizations to address the storage (Client-Garbler), computation (layer-parallel HE), and communication (wireless slot allocation) overheads. Compared to the state-of-the-art PI protocol, these optimizations provide a total PI speedup of 1.8$\times$ with the ability to sustain inference requests up to a 2.24$\times$ greater rate.


翻译:在两方机器学习预测服务中,客户的目标是查询远程服务器经过培训的机器学习模型,以在某些应用域进行神经网络推断;然而,客户或服务器在这一过程中可以获得敏感信息,从而可能导致收集、未经授权的二次使用以及个人信息的不适当获取。这些安全关切导致私人推断(PI),其中客户的个人数据和服务器经过培训的模式都保密。最先进的PI协议包括一个预处理或离线阶段和一个在线阶段,该阶段结合了若干直线式加密原始数据:智能式电路加密(HE)、秘密共享(SS)、腐蚀式电路路接头(GC)和Oblicast Gread(OT))。尽管需要和最近的性能改进,但PII今天基本上仍然在弧,实际使用速度太慢了。本文用一种详细的高性价协议来描述PII的缺点,目的是在系统社区中建立基础性知识和直觉(我们从效率中找出所有来源 -- -- 忠实、通信、通信和存储速度能力,但最终无法在存储阶段进行。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
76+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年4月11日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员