In this paper, we revisit Korn's inequality for the piecewise $H^1$ space based on general polygonal or polyhedral decompositions of the domain. Our Korn's inequality is expressed with minimal jump terms. These minimal jump terms are identified by characterizing the restriction of rigid body mode to edge/face of the partitions. Such minimal jump conditions are shown to be sharp for achieving the Korn's inequality as well. The sharpness of our result and explicitly given minimal conditions can be used to test whether any given finite element spaces satisfy Korn's inequality, immediately as well as to build or modify nonconforming finite elements for Korn's inequality to hold.
翻译:在本文中, 我们重新审视了科恩的不平等程度, 其依据是这个领域的普通多边形或多面分解空间。 我们的科恩的不平等表现为最小跳跃条件。 这些最小跳跃条件通过将僵硬身体模式限制在隔段边缘/ 侧面的特征来识别。 这些最低跳跃条件对于实现科恩的不平等也表现得非常尖锐。 我们的结果和明确给出的最低条件的清晰度可以用来测试任何特定的限制元素空间是否满足科恩的不平等, 并立即建立或修改不兼容的限定要素, 以维持科恩的不平等 。