Predicting stock prices from textual information is a challenging task due to the uncertainty of the market and the difficulty understanding the natural language from a machine's perspective. Previous researches focus mostly on sentiment extraction based on single news. However, the stocks on the financial market can be highly correlated, one news regarding one stock can quickly impact the prices of other stocks. To take this effect into account, we propose a new stock movement prediction framework: Multi-Graph Recurrent Network for Stock Forecasting (MGRN). This architecture allows to combine the textual sentiment from financial news and multiple relational information extracted from other financial data. Through an accuracy test and a trading simulation on the stocks in the STOXX Europe 600 index, we demonstrate a better performance from our model than other benchmarks.


翻译:从文字信息预测股票价格是一项具有挑战性的任务,因为市场不确定,而且难以从机器的角度理解自然语言。以往的研究主要侧重于基于单一新闻的情绪提取。然而,金融市场上的股票可能高度相关,一个关于一个股票的新闻可以迅速影响其他股票的价格。考虑到这一影响,我们提议一个新的股票流动预测框架:多格经常网股票预测。这一结构可以将金融新闻的文字情绪和其他金融数据中提取的多种关系信息结合起来。通过对STOXX欧洲600指数中的股票进行精确测试和贸易模拟,我们从模型上展示出比其他基准更好的业绩。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
因果关联学习,Causal Relational Learning
专知会员服务
182+阅读 · 2020年4月21日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
论文浅尝 | Reinforcement Learning for Relation Classification
开放知识图谱
9+阅读 · 2017年12月10日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Type-augmented Relation Prediction in Knowledge Graphs
Arxiv
26+阅读 · 2018年2月27日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
论文浅尝 | Reinforcement Learning for Relation Classification
开放知识图谱
9+阅读 · 2017年12月10日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员