It is well understood that client-master communication can be a primary bottleneck in Federated Learning. In this work, we address this issue with a novel client subsampling scheme, where we restrict the number of clients allowed to communicate their updates back to the master node. In each communication round, all participating clients compute their updates, but only the ones with "important" updates communicate back to the master. We show that importance can be measured using only the norm of the update and give a formula for optimal client participation. This formula minimizes the distance between the full update, where all clients participate, and our limited update, where the number of participating clients is restricted. In addition, we provide a simple algorithm that approximates the optimal formula for client participation, which only requires secure aggregation and thus does not compromise client privacy. We show both theoretically and empirically that for Distributed SGD (DSGD) and Federated Averaging (FedAvg), the performance of our approach can be close to full participation and superior to the baseline where participating clients are sampled uniformly. Moreover, our approach is orthogonal to and compatible with existing methods for reducing communication overhead, such as local methods and communication compression methods.
翻译:众所周知, 客户- 主管的沟通可以成为联邦学习的主要瓶颈。 在这项工作中, 我们通过一个新客户子抽样计划来解决这个问题, 限制客户数量, 限制客户将最新信息反馈到主节点。 在每轮交流中, 所有参与的客户都计算更新信息, 但只有“ 重要” 更新信息反馈给主机。 我们显示, 只能使用更新规范来衡量其重要性, 并给出最佳客户参与的公式。 这个公式最大限度地缩小了全部更新( 所有客户都参与)与有限更新( 参与客户数量受限)之间的距离。 此外, 我们提供了一种简单算法, 与客户参与的最佳模式相近, 这只需要安全的聚合, 因而不会损害客户隐私。 我们从理论上和实践中都可以看出, 分配 SGD ( DSGD) 和 联邦verageing ( FedAvg) 方法的绩效可以接近于充分参与, 并优于参与客户统一抽样的基线。 此外, 我们的方法与现有降低通信管理方法相近且符合现有方法, 如本地方法和压缩方式。