Model Predictive Control (MPC) is a well-established approach to solve infinite horizon optimal control problems. Since optimization over an infinite time horizon is generally infeasible, MPC determines a suboptimal feedback control by repeatedly solving finite time optimal control problems. Although MPC has been successfully used in many applications, applying MPC to large-scale systems -- arising, e.g., through discretization of partial differential equations -- requires the solution of high-dimensional optimal control problems and thus poses immense computational effort. We consider systems governed by parametrized parabolic partial differential equations and employ the reduced basis (RB) method as a low-dimensional surrogate model for the finite time optimal control problem. The reduced order optimal control serves as feedback control for the original large-scale system. We analyze the proposed RB-MPC approach by first developing a posteriori error bounds for the errors in the optimal control and associated cost functional. These bounds can be evaluated efficiently in an offline-online computational procedure and allow us to guarantee asymptotic stability of the closed-loop system using the RB-MPC approach. We also propose an adaptive strategy to choose the prediction horizon of the finite time optimal control problem. Numerical results are presented to illustrate the theoretical properties of our approach.


翻译:模型预测控制(MPC)是解决无限地平线最佳控制问题的既定方法。由于在无限时间平线上优化一般不可行,MPC通过反复解决有限时间的最佳控制问题确定亚最佳反馈控制。尽管MPC在许多应用中被成功使用,但将MPC应用于大型系统 -- -- 例如,通过部分差异方程式的离散处理 -- -- 需要解决高维最佳控制问题,从而带来巨大的计算努力。我们认为,由平衡的参数偏差部分差异方程式所管理的系统,并采用缩小基数(RB)方法作为有限时间最佳控制问题的低维度替代模型。减少的订单最佳控制是原始大型系统的反馈控制。我们分析拟议的RB-MPC方法,首先开发出最佳控制错误的后继误圈,并随之产生成本功能。这些界限可以在离线计算程序中得到高效评估,并使我们能够保证使用固定地平线部分偏差部分偏差的偏差方程式作为有限基数控制问题的低维基(RBM-MPC)方法。我们还提议了对最佳时空预测结果的调整战略。

0
下载
关闭预览

相关内容

机器学习组合优化
专知会员服务
106+阅读 · 2021年2月16日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
75+阅读 · 2020年7月26日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
106+阅读 · 2020年5月15日
强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
7+阅读 · 2020年6月29日
Meta-Learning with Implicit Gradients
Arxiv
13+阅读 · 2019年9月10日
Sparse Sequence-to-Sequence Models
Arxiv
5+阅读 · 2019年5月14日
Arxiv
6+阅读 · 2018年10月3日
Arxiv
3+阅读 · 2018年2月24日
Arxiv
3+阅读 · 2018年1月31日
Arxiv
3+阅读 · 2017年12月1日
VIP会员
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
相关论文
Arxiv
7+阅读 · 2020年6月29日
Meta-Learning with Implicit Gradients
Arxiv
13+阅读 · 2019年9月10日
Sparse Sequence-to-Sequence Models
Arxiv
5+阅读 · 2019年5月14日
Arxiv
6+阅读 · 2018年10月3日
Arxiv
3+阅读 · 2018年2月24日
Arxiv
3+阅读 · 2018年1月31日
Arxiv
3+阅读 · 2017年12月1日
Top
微信扫码咨询专知VIP会员