We analyze the (parameterized) computational complexity of "fair" variants of bipartite many-to-one matching, where each vertex from the "left" side is matched to exactly one vertex and each vertex from the "right" side may be matched to multiple vertices. We want to find a "fair" matching, in which each vertex from the right side is matched to a "fair" set of vertices. Assuming that each vertex from the left side has one color modeling its attribute, we study two fairness criteria. In one of them, we deem a vertex set fair if for any two colors, the difference between the numbers of their occurrences does not exceed a given threshold. Fairness is relevant when finding many-to-one matchings between students and colleges, voters and constituencies, and applicants and firms. Here colors may model sociodemographic attributes, party memberships, and qualifications, respectively. We show that finding a fair many-to-one matching is NP-hard even for three colors and maximum degree five. Our main contribution is the design of fixed-parameter tractable algorithms with respect to the number of vertices on the right side. Our algorithms make use of a variety of techniques including color coding. At the core lie integer linear programs encoding Hall like conditions. To establish the correctness of our integer programs, we prove a new separation result, inspired by Frank's separation theorem [Frank, Discrete Math. 1982], which may also be of independent interest. We further obtain complete complexity dichotomies regarding the number of colors and the maximum degree of each side.


翻译:我们想要找到一个“ 公平” 匹配的“ 公平” 变量的计算复杂性。 我们假设左侧的每个顶端有一个颜色的特性模型, 我们研究两个公平标准。 其中之一, 我们认为一个顶端设置是公平的, 如果任何两种颜色, 其发生次数之间的差异不会超过给定的门槛。 当找到学生和学院、选民和选民以及申请者和公司之间的多个对齐时, 公平是相关的。 这里的颜色可以分别建模社会人口特征、 党员和资格。 我们从左边的每个顶端都有一个颜色的颜色模型。 我们研究两个公平标准。 其中之一, 我们认为一个顶端设置是公平的, 如果对任何一个颜色来说, 其发生次数的差异不会超过给定的门槛。 当找到学生和学院、 选民和选区以及申请者和公司之间的多个对齐匹配时, 公平匹配。 这里的颜色可以分别建模社会人口特征、 党员和资格的模型。 我们显示, 找到一个平分级的对等级匹配, 甚至是三个颜色和最高五度。 我们的主要贡献是固定的颜色的颜色配置设计,, 包括每平整级程程程程程程程程程程程程中, 我们的排序的排序, 我们的排序的排序,, 我们的排序的排序的排序的排序,, 的排序的排序的排序的排序的排序的排序的排序,, 。

0
下载
关闭预览

相关内容

机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
The distance backbone of directed networks
Arxiv
0+阅读 · 2022年9月2日
Fair mapping
Arxiv
0+阅读 · 2022年9月1日
Arxiv
0+阅读 · 2022年9月1日
Arxiv
12+阅读 · 2021年6月29日
Arxiv
13+阅读 · 2018年4月6日
VIP会员
相关资讯
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员