The kinematic features of a centaur-type humanoid platform, combined with a powerful actuation, enable the experimentation of a variety of agile and dynamic motions. However, the higher number of degrees-of-freedom and the increased weight of the system, compared to the bipedal and quadrupedal counterparts, pose significant research challenges in terms of computational load and real implementation. To this end, this work presents a control architecture to perform agile actions, conceived for torque-controlled platforms, which decouples for computational purposes offline optimal control planning of lower-body primitives, based on a template kinematic model, and online control of the upper-body motion to maintain balance. Three stabilizing strategies are presented, whose performance is compared in two types of simulated jumps, while experimental validation is performed on a half-squat jump using the CENTAURO robot.
翻译:中子类人造平台的动态特征,加上强大的电动作用,使得能够实验各种灵活和动态的动作。然而,与双向和双向对等平台相比,自由度较高,系统重量增加,在计算负荷和实际执行方面构成巨大的研究挑战。为此,这项工作提供了一个控制结构,以进行灵活动作,为反向控制平台设计,为计算目的,根据样板动态模型,将低体原始生物的最佳控制规划脱钩,并对上体运动进行在线控制,以保持平衡。介绍了三种稳定战略,其性能在两种模拟跳跃中比较,而实验验证则在半平方跳动时使用CENTARO机器人进行。