Decomposing a complex time series into trend, seasonality, and remainder components is an important primitive that facilitates time series anomaly detection, change point detection and forecasting. Although numerous batch algorithms are known for time series decomposition, none operate well in an online scalable setting where high throughput and real-time response are paramount. In this paper, we propose OnlineSTL, a novel online algorithm for time series decomposition which solves the scalability problem and is deployed for real-time metrics monitoring on high resolution, high ingest rate data. Experiments on different synthetic and real world time series datasets demonstrate that OnlineSTL achieves orders of magnitude speedups while maintaining quality of decomposition.
翻译:将复杂的时间序列分解成趋势、季节性和剩余部分是重要的原始元素,有助于时间序列异常的检测、改变点的检测和预测。 尽管许多批量算法以时间序列分解为名,但没有一个批量算法在可扩展的在线环境中运行良好,在这种环境中,高吞吐量和实时反应最为重要。 在本文中,我们提出在线STL(OnlineSTL),这是一个用于时间序列分解的新颖的在线算法,它解决了可缩放问题,并用于实时监测高分辨率、高摄取率数据。 对不同合成和真实世界时间序列数据集的实验表明,在线STL在保持分解质量的同时实现了数量级加速。