Randomized block Kaczmraz method plays an important role in solving large-scale linear system. One of the keys of this method is how to effectively select working rows. However, to select the working rows, in most of the state-of-the-art randomized block Kaczmarz-type methods, one has to scan all the rows of the coefficient matrix in advance to compute probabilities, or to compute the residual vector of the linear system in each iteration. Thus, we have to access all the rows of the data matrix in these methods, which are unfavorable for big-data problems. Moreover, to the best of our knowledge, how to efficiently choose working rows in randomized block Kaczmarz-type methods for multiple linear systems is still an open problem. In order to deal with these problems, we propose semi-randomized block Kaczmarz methods with simple random sampling for linear systems with single and multiple right-hand sizes, respectively. In these methods, there is no need to scan or pave all the rows of the coefficient matrix, nor to compute probabilities and the residual vector of the linear system in each outer iteration. Specifically, we propose a scheme for choosing working rows effectively in randomized block Kaczmarz-type methods. The convergence of the proposed methods are given. Numerical experiments on both real-world and synthetic data sets show that the proposed methods are superior to many state-of-the-art randomized Kaczmarz-type methods for large-scale linear systems.
翻译:Kaczmraz 区块的随机制块在解决大型线性系统方面起着重要作用。 这种方法的关键之一是如何有效地选择工作行。 然而, 在大多数最先进的随机制块卡茨马尔兹类型方法中, 选择工作行时, 要先扫描系数矩阵的所有行, 才能计算概率, 或者在每次迭代中计算线性系统的残余矢量。 因此, 我们必须访问这些方法中的数据矩阵的所有行, 这些方法对于大数据问题来说是不可接受的。 此外, 根据我们的知识, 在随机化区块的卡茨马尔兹类型方法中, 如何在多线性系统中高效地选择工作行。 为了解决这些问题, 我们建议了半随机化的卡茨马尔茨区块方法, 用简单的随机采样方法来计算线性系统, 并提出了多个右尺寸。 在这些方法中, 不需要扫描或铺平所有行的系数矩阵的行。 此外, 卡茨 类的直线性类型方法, 也可以有效地选择每个直线性系统 的直径性矩阵方法 。