We show that the sample complexity of robust interpolation problem could be exponential in the input dimensionality and discover a phase transition phenomenon when the data are in a unit ball. Robust interpolation refers to the problem of interpolating $n$ noisy training data in $\R^d$ by a Lipschitz function. Although this problem has been well understood when the covariates are drawn from an isoperimetry distribution, much remains unknown concerning its performance under generic or even the worst-case distributions. Our results are two-fold: 1) too many data hurt robustness; we provide a tight and universal Lipschitzness lower bound $\Omega(n^{1/d})$ of the interpolating function for arbitrary data distributions. Our result disproves potential existence of an $\mathcal{O}(1)$-Lipschitz function in the overparametrization scenario when $n=\exp(\omega(d))$. 2) Small data hurt robustness: $n=\exp(\Omega(d))$ is necessary for obtaining a good population error under certain distributions by any $\mathcal{O}(1)$-Lipschitz learning algorithm. Perhaps surprisingly, our results shed light on the curse of big data and the blessing of dimensionality for robustness, and discover an intriguing phenomenon of phase transition at $n=\exp(\Theta(d))$.


翻译:我们显示,强力内插问题的抽样复杂性在输入维度中可能是指数化的,当数据在一个单位球中时会发现一个阶段性过渡现象。 强力内插是指以利普西茨函数将美元噪音培训数据以美元内插的问题。 虽然当从同位素分布中得出共差时,这个问题已经非常清楚,但在通用或甚至最坏的分布中,其性能仍有很多未知数。 我们的结果有两重:(1) 数据太多伤害了稳健性;我们提供了一种紧紧和普遍的利普西茨低约束的美元(n ⁇ 1/d}) 。 强力内插函数的内插值是任意数据分布的美元。 我们的结果排除了在超能力分布的情况下存在美元(O}(1) 美元- 利普西茨维特功能的功能。 小额数据伤害了我们在某些分布中获得良好人口错误( 美元/升/ d) 和 螺旋性(美元) 令人惊讶地在质量分析结果中学习一个令人惊讶的快速流化的结果。

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月14日
专知会员服务
85+阅读 · 2020年12月5日
MIT-深度学习Deep Learning State of the Art in 2020,87页ppt
专知会员服务
62+阅读 · 2020年2月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
5+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月18日
Arxiv
23+阅读 · 2022年2月24日
Arxiv
65+阅读 · 2021年6月18日
Arxiv
18+阅读 · 2021年3月16日
VIP会员
相关VIP内容
专知会员服务
51+阅读 · 2020年12月14日
专知会员服务
85+阅读 · 2020年12月5日
MIT-深度学习Deep Learning State of the Art in 2020,87页ppt
专知会员服务
62+阅读 · 2020年2月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
5+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员