We propose a novel attention-based 2D-to-3D pose estimation network for graph-structured data, named KOG-Transformer, and a 3D pose-to-shape estimation network for hand data, named GASE-Net. Previous 3D pose estimation methods have focused on various modifications to the graph convolution kernel, such as abandoning weight sharing or increasing the receptive field. Some of these methods employ attention-based non-local modules as auxiliary modules. In order to better model the relationship between nodes in graph-structured data and fuse the information of different neighbor nodes in a differentiated way, we make targeted modifications to the attention module and propose two modules designed for graph-structured data, graph relative positional encoding multi-head self-attention (GR-MSA) and K-order graph-oriented multi-head self-attention (KOG-MSA). By stacking GR-MSA and KOG-MSA, we propose a novel network KOG-Transformer for 2D-to-3D pose estimation. Furthermore, we propose a network for shape estimation on hand data, called GraAttention shape estimation network (GASE-Net), which takes a 3D pose as input and gradually models the shape of the hand from sparse to dense. We have empirically shown the superiority of KOG-Transformer through extensive experiments. Experimental results show that KOG-Transformer significantly outperforms the previous state-of-the-art methods on the benchmark dataset Human3.6M. We evaluate the effect of GASE-Net on two public available hand datasets, ObMan and InterHand2.6M. GASE-Net can predict the corresponding shape for input pose with strong generalization ability.


翻译:我们提出一个新的基于2D至3D的图表结构数据估计网络,名为KOG-Transerferent,3D的图表结构数据构成估计网络,名为GASE-Net。先前的3D的估算方法侧重于对图形组合内核的各种修改,如放弃权重共享或增加可接受性字段。其中一些方法将基于关注的非本地模块用作辅助模块。为了更好地模拟图形结构数据节点与不同方式整合不同网络节点的信息之间的关系,我们对关注模块作了有针对性的修改,并提出了为图表结构数据、图形相对位置编码多头自留(GR-MSA)和K-顺序图图向图形多头自留(KOG-MSA)设计的两个模块。通过将GRA-MSA和KOG-MSA作为辅助模块,我们提出了一个新的 KOG-Transerformormation 网络的配置网络,我们提议了一个强有力的数据估算网络,要求GAAR-SO-SERM 的模型通过SAR-IG-Serview Adal-IG-IG-IG-ILA-IG-IG-IG-ILA-IG-IG-IG-IG-S-S-S-IG-IG-IG-IG-S-S-S-S-IL-IG-IG-IG-IG-IG-IG-IG-IG-S-S-IG-S-S-S-S-S-S-S-IG-IG-IG-IG-S-ID-ID-ID-S-S-S-S-S-ID-ID-S-S-S-S-ID-S-S-I-I-I-I-I-S-S-S-S-S-I-I-I-I-I-IG-S-IG-IG-S-S-S-S-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-

0
下载
关闭预览

相关内容

专知会员服务
61+阅读 · 2020年3月19日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员