In this paper, we consider the problem of recovering random graph signals from nonlinear measurements. We formulate the maximum a-posteriori probability (MAP) estimator, which results in a nonconvex optimization problem. Conventional iterative methods for minimizing nonconvex problems are sensitive to the initialization, have high computational complexity, and do not utilize the underlying graph structure behind the data. In this paper we propose two new estimators that are both based on the Gauss-Newton method: 1) the elementwise graph-frequency-domain MAP (eGFD-MAP) estimator; and 2) the graph signal processing MAP (GSP-MAP) estimator. At each iteration, these estimators are updated by the outputs of two graph filters, with the previous state estimator and the residual as the input graph signals. The eGFD-MAP estimator is an ad-hoc method that minimizes the MAP objective function in the graph frequency domain and neglects mixed-derivatives of different graph frequencies in the Jacobian matrix as well as off-diagonal elements in the covariance matrices. Consequently, it updates the elements of the graph signal independently, which reduces the computational complexity compared to the conventional MAP estimator. The GSP-MAP estimator is based on optimizing the graph filters at each iteration of the Gauss-Newton algorithm. We state conditions under which the eGFD-MAP and GSP- MAP estimators coincide with the MAP estimator, in the case of an observation model with orthogonal graph frequencies. We evaluate the performance of the estimators for nonlinear graph signal recovery tasks with synthetic data and with the real-world problem of state estimation in power systems. These simulations show the advantages of the proposed estimators in terms of computational complexity, mean-squared-error, and robustness to the initialization of the iterative algorithms.
翻译:在本文中, 我们考虑从非线性测量中恢复随机图形信号的问题 。 我们设计了最大等离差概率( MAP) 估测器, 从而导致非 Convex 优化问题 。 常规迭代方法将非 convex 问题最小化对初始化十分敏感, 具有很高的计算复杂性, 不使用数据背后的原始图形结构 。 在本文中, 我们提议了两个基于 Gaus- Newton 方法的新的估测器 :1 元素的图形频率( eGFD- MAP) 估测器 ; 和 2 图形信号处理器 最大离差概率概率概率( GSP- MAP) 估测器, 导致非conforestor 的 MAD( MADAMAD) 。 在每次迭代数过滤器中, 由两个图形过滤器的输出进行更新, 由先前状态估测算器和剩余部分的 。 egrodeal- mal- daldia IM 显示, 的Smargistral- dal- dalder- dalder- dismodalder- dismodistration 。 。 和每个 的Salider- smodalder- smodalmod- smodalmod- smod- smod- smodald- smodmod- smodal 的 的 的 mamodmodmodalmamodal madals mamodmod- smods madals mads 和Smoment mad- smoment madals madalds madsmodsmodsmodsmodals 和smads mads 和Smods 和Smodsmodsmadsmodaldaldaldaldalds mas 和Smodals 和Smodals 和Smodaldals 和Smodals 和Smodmodalsmas 和Smos 的 的 的 的