Due to the absence of connectives, implicit discourse relation recognition (IDRR) is still a challenging and crucial task in discourse analysis. Most of the current work adopted multitask learning to aid IDRR through explicit discourse relation recognition (EDRR) or utilized dependencies between discourse relation labels to constrain model predictions. But these methods still performed poorly on fine-grained IDRR and even utterly misidentified on most of the few-shot discourse relation classes. To address these problems, we propose a novel Prompt-based Connective Prediction (PCP) method for IDRR. Our method instructs large-scale pre-trained models to use knowledge relevant to discourse relation and utilizes the strong correlation between connectives and discourse relation to help the model recognize implicit discourse relations. Experimental results show that our method surpasses the current state-of-the-art model and achieves significant improvements on those fine-grained few-shot discourse relation. Moreover, our approach is able to be transferred to EDRR and obtain acceptable results. Our code is released in https://github.com/zh-i9/PCP-for-IDRR.
翻译:由于缺乏连接,隐含的谈话关系承认(IDR)仍然是对话分析中一项具有挑战性和关键的任务。目前多数工作所采用的多任务学习方法,通过明确的谈话关系承认(EDR)或使用谈话关系标签之间的依赖性来帮助减灾和重建,以限制模型预测。但是,这些方法在细微的DIRR上表现不佳,甚至在大多数微小的谈话关系类别上甚至完全被错误地发现。为了解决这些问题,我们提议为IDR采用一种新型的基于迅速的联网预测(PCP)方法。我们的方法指示大规模预先培训的模型使用与谈话关系有关的知识,并利用连接和谈话关系之间的密切关联性以帮助模型承认隐含的谈话关系。实验结果表明,我们的方法超过了目前的最新模式,并在微小的访谈关系上取得了重大改进。此外,我们的方法可以转移到EDRRR,并获得可接受的结果。我们的代码发布在https://github.com/zh-i9/PCP-for-IDRR。