In the analyses of cluster-randomized trials, a standard approach for covariate adjustment and handling within-cluster correlations is the mixed-model analysis of covariance (ANCOVA). The mixed-model ANCOVA makes stringent assumptions, including normality, linearity, and a compound symmetric correlation structure, which may be challenging to verify and may not hold in practice. When mixed-model ANCOVA assumptions are violated, the validity and efficiency of the model-based inference for the average treatment effect are currently unclear. In this article, we prove that the mixed-model ANCOVA estimator for the average treatment effect is consistent and asymptotically normal under arbitrary misspecification of its working model. Under equal randomization, we further show that the model-based variance estimator for the mixed-model ANCOVA estimator remains consistent, clarifying that the confidence interval given by standard software is asymptotically valid even under model misspecification. Beyond robustness, we also provide a caveat that covariate adjustment via mixed-model ANCOVA may lead to precision loss compared to no adjustment when the covariance structure is misspecified, and describe when a cluster-level ANCOVA becomes more efficient. These results hold under both simple and stratified randomization, and are further illustrated via simulations as well as analyses of three cluster-randomized trials.
翻译:在分析集束随机试验时,对集群内相关关系进行共变调整和处理的标准方法是混合模型分析(ANCOVA)。混合模型ANCOVA对共变情况作了严格的假设,包括正常性、直线性和复合对称相关结构,这些假设可能难以核实,而且实际上可能无法维持。当混合模型ANCOVA的假设被违反时,基于模型的平均处理效果判断的有效性和效率目前还不清楚。在本条中,我们证明,对平均处理效果的混合模型ANCOVA平均处理效果估算师是一贯的,而且,在对其工作模式的任意错误区分下,这种混合模型对等式的假设是正常的,包括正常性、直线性和复合对等性对应性相关结构。我们进一步表明,混合模型ANCOVA估计师的模型差异估算师仍然具有一致性,澄清标准软件给定的信任间隔即使根据模型误判,也具有同样的有效性和效率。除了强的外,我们还提供了一个洞穴,通过混合模型对ANCOVA的平均处理效果的混合模型调整可能会导致精确的损失,而当这些分类和随机分析成为更精确的分类分析时,这些结果是,在AVARVA的模拟结构之下进行更精确性分析,这些分析是没有进行。