Data imbalance is common in production data, where controlled production settings require data to fall within a narrow range of variation and data are collected with quality assessment in mind, rather than data analytic insights. This imbalance negatively impacts the predictive performance of models on underrepresented observations. We propose sampling to adjust for this imbalance with the goal of improving the performance of models trained on historical production data. We investigate the use of three sampling approaches to adjust for imbalance. The goal is to downsample the covariates in the training data and subsequently fit a regression model. We investigate how the predictive power of the model changes when using either the sampled or the original data for training. We apply our methods on a large biopharmaceutical manufacturing data set from an advanced simulation of penicillin production and find that fitting a model using the sampled data gives a small reduction in the overall predictive performance, but yields a systematically better performance on underrepresented observations. In addition, the results emphasize the need for alternative, fair, and balanced model evaluations.


翻译:在生产数据中,数据不平衡现象很常见,受控生产环境要求数据属于范围狭窄的变异范围,而数据是在质量评估的基础上收集的,而不是数据分析的洞察力。这种不平衡现象对代表性不足的观测模型的预测性表现产生了负面影响。我们建议抽样以适应这种不平衡,目的是改善经过历史生产数据培训的模型的性能。我们调查三种抽样方法的使用情况,以适应不平衡现象。目标是缩小培训数据中的共变数,随后适合回归模式。我们调查在使用抽样或原始培训数据时模型变化的预测力。我们采用的方法是,从青霉素生产的高级模拟中,对一套大型生物制药制造数据进行应用。我们发现,利用抽样数据来安装模型,可以小幅减少总体预测性表现,但能系统地改善代表性不足观测的绩效。此外,结果强调需要采用替代、公平和平衡的模型评估。

0
下载
关闭预览

相关内容

【数据科学导论书】Introduction to Datascience,253页pdf
专知会员服务
47+阅读 · 2021年11月15日
【干货书】机器学习速查手册,135页pdf
专知会员服务
122+阅读 · 2020年11月20日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
8+阅读 · 2017年11月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【论文】图上的表示学习综述
机器学习研究会
12+阅读 · 2017年9月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
0+阅读 · 2022年1月21日
Arxiv
0+阅读 · 2022年1月19日
Imitation by Predicting Observations
Arxiv
4+阅读 · 2021年7月8日
On Feature Normalization and Data Augmentation
Arxiv
14+阅读 · 2020年2月25日
VIP会员
相关VIP内容
【数据科学导论书】Introduction to Datascience,253页pdf
专知会员服务
47+阅读 · 2021年11月15日
【干货书】机器学习速查手册,135页pdf
专知会员服务
122+阅读 · 2020年11月20日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
8+阅读 · 2017年11月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【论文】图上的表示学习综述
机器学习研究会
12+阅读 · 2017年9月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员