Node representation learning has demonstrated its efficacy for various applications on graphs, which leads to increasing attention towards the area. However, fairness is a largely under-explored territory within the field, which may lead to biased results towards underrepresented groups in ensuing tasks. To this end, this work theoretically explains the sources of bias in node representations obtained via Graph Neural Networks (GNNs). Our analysis reveals that both nodal features and graph structure lead to bias in the obtained representations. Building upon the analysis, fairness-aware data augmentation frameworks on nodal features and graph structure are developed to reduce the intrinsic bias. Our analysis and proposed schemes can be readily employed to enhance the fairness of various GNN-based learning mechanisms. Extensive experiments on node classification and link prediction are carried out over real networks in the context of graph contrastive learning. Comparison with multiple benchmarks demonstrates that the proposed augmentation strategies can improve fairness in terms of statistical parity and equal opportunity, while providing comparable utility to state-of-the-art contrastive methods.


翻译:节点代表学习证明了其在图表上各种应用中的功效,这导致对该地区的日益关注,然而,公平性在很大程度上是该领域内探索不足的领域,可能导致在随后的任务中对代表人数不足的群体产生偏颇的结果。为此,这项工作从理论上解释了通过图形神经网络(GNNs)获得的节点表达中的偏见来源。我们的分析表明,节点特征和图表结构导致获得的表述中的偏见。在分析的基础上,制定了关于节点特征和图表结构的公平觉悟数据增强框架,以减少内在偏见。我们的分析与拟议的计划可以很容易地用来提高基于GNN的各类学习机制的公平性。在图表对比学习中,对节点分类和链接预测进行了广泛的实验。与多个基准的比较表明,拟议的扩展战略可以提高统计均等和平等机会方面的公平性,同时为最先进的对比方法提供可比的效用。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
KDD2021 | 最新GNN官方教程
机器学习与推荐算法
2+阅读 · 2021年8月18日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
2+阅读 · 2022年4月19日
Arxiv
23+阅读 · 2022年2月24日
Arxiv
38+阅读 · 2020年12月2日
Attentive Graph Neural Networks for Few-Shot Learning
Arxiv
40+阅读 · 2020年7月14日
Arxiv
35+阅读 · 2020年1月2日
Arxiv
24+阅读 · 2018年10月24日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
KDD2021 | 最新GNN官方教程
机器学习与推荐算法
2+阅读 · 2021年8月18日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关论文
Arxiv
0+阅读 · 2022年4月19日
Arxiv
2+阅读 · 2022年4月19日
Arxiv
23+阅读 · 2022年2月24日
Arxiv
38+阅读 · 2020年12月2日
Attentive Graph Neural Networks for Few-Shot Learning
Arxiv
40+阅读 · 2020年7月14日
Arxiv
35+阅读 · 2020年1月2日
Arxiv
24+阅读 · 2018年10月24日
相关基金
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员