Deep Learning (DL) models increasingly power a diversity of applications. Unfortunately, this pervasiveness also makes them attractive targets for extraction attacks which can steal the architecture, parameters, and hyper-parameters of a targeted DL model. Existing extraction attack studies have observed varying levels of attack success for different DL models and datasets, yet the underlying cause(s) behind their susceptibility often remain unclear. Ascertaining such root-cause weaknesses would help facilitate secure DL systems, though this requires studying extraction attacks in a wide variety of scenarios to identify commonalities across attack success and DL characteristics. The overwhelmingly high technical effort and time required to understand, implement, and evaluate even a single attack makes it infeasible to explore the large number of unique extraction attack scenarios in existence, with current frameworks typically designed to only operate for specific attack types, datasets and hardware platforms. In this paper we present PINCH: an efficient and automated extraction attack framework capable of deploying and evaluating multiple DL models and attacks across heterogeneous hardware platforms. We demonstrate the effectiveness of PINCH by empirically evaluating a large number of previously unexplored extraction attack scenarios, as well as secondary attack staging. Our key findings show that 1) multiple characteristics affect extraction attack success spanning DL model architecture, dataset complexity, hardware, attack type, and 2) partially successful extraction attacks significantly enhance the success of further adversarial attack staging.


翻译:深度学习(DL)模型日益增强多种应用的力量。不幸的是,这种普遍性还使它们具有吸引力的抽取攻击目标,从而可以窃取定向DL模型的结构、参数和超参数。现有的抽取攻击研究发现,不同DL模型和数据集的攻击成功程度不同,但其易感性背后的根本原因往往仍然不清楚。确定这种根源性弱点将有助于建立安全的DL系统,尽管这需要在各种情景中研究抽取攻击,以确定攻击成功和DL特征之间的共性。即使是一次攻击也需要大量技术努力和时间才能理解、执行和评价,这使得无法探索现有的大量独特的抽取攻击情景,而目前的框架通常只设计为特定攻击类型、数据集和硬件平台运作。本文介绍PINCH:一个高效和自动化的抽取攻击框架,能够部署和评价多种DL模型和不同硬件平台的攻击。我们通过实证评估大量先前未探索的抽取攻击情景,以及作为二次攻击的重要次攻击形式,来证明PINCH的有效性。我们的主要调查结果显示,成功程度的抽取模型,以及作为多重攻击的递取性攻击的进度结构。

0
下载
关闭预览

相关内容

专知会员服务
44+阅读 · 2020年10月31日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
23+阅读 · 2022年2月24日
Arxiv
38+阅读 · 2020年3月10日
Adversarial Transfer Learning
Arxiv
12+阅读 · 2018年12月6日
VIP会员
相关资讯
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员