Traditionally, Hawkes processes are used to model time--continuous point processes with history dependence. Here we propose an extended model where the self--effects are of both excitatory and inhibitory type and follow a Gaussian Process. Whereas previous work either relies on a less flexible parameterization of the model, or requires a large amount of data, our formulation allows for both a flexible model and learning when data are scarce. We continue the line of work of Bayesian inference for Hawkes processes, and our approach dispenses with the necessity of estimating a branching structure for the posterior, as we perform inference on an aggregated sum of Gaussian Processes. Efficient approximate Bayesian inference is achieved via data augmentation, and we describe a mean--field variational inference approach to learn the model parameters. To demonstrate the flexibility of the model we apply our methodology on data from three different domains and compare it to previously reported results.
翻译:传统上,霍克斯进程用历史依赖性来模拟时间-持续点进程。 我们在此提出一个扩大的模型,使自我效应既具有刺激性和抑制性,又遵循高斯进程。 以前的工作要么依赖于模型较不灵活的参数化,要么需要大量数据,我们的配方允许在数据稀少时采用灵活的模型和学习。 我们继续Bayesian Hawkes进程推论的系列工作,而我们的方法则免除了估计后方结构的分支结构的必要性,因为我们对高斯进程的总和进行了推论。 高效近贝斯推论是通过数据扩增实现的,我们描述了一种了解模型参数的中位变推论方法。 为了显示我们从三个不同领域应用数据的方法的模型的灵活性,并将它与以前报告的结果进行比较。