This work is concerned with approximating matrix functions for banded matrices, hierarchically semiseparable matrices, and related structures. We develop a new divide-and-conquer method based on (rational) Krylov subspace methods for performing low-rank updates of matrix functions. Our convergence analysis of the newly proposed method proceeds by establishing relations to best polynomial and rational approximation. When only the trace or the diagonal of the matrix function is of interest, we demonstrate -- in practice and in theory -- that convergence can be faster. For the special case of a banded matrix, we show that the divide-and-conquer method reduces to a much simpler algorithm, which proceeds by computing matrix functions of small submatrices. Numerical experiments confirm the effectiveness of the newly developed algorithms for computing large-scale matrix functions from a wide variety of applications.


翻译:这项工作涉及带宽矩阵、分等级半分离矩阵和相关结构的接近矩阵功能。我们根据(合理的) Krylov 子空间方法开发了一种新的分化和征服方法,用于进行低级别矩阵功能更新。我们通过建立最佳多元和合理近似关系对新提议的方法进行了趋同分析。当只对矩阵函数的痕量或对等值感兴趣时,我们在实践和理论上表明,趋同可以更快。对于带宽矩阵的特殊情况,我们表明,分化和共解方法可以简化为一种简单得多的算法,通过计算小型次矩阵的矩阵功能进行。数字实验证实了新开发的从多种应用中计算大型矩阵功能的算法的有效性。

0
下载
关闭预览

相关内容

专知会员服务
77+阅读 · 2021年3月16日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
机器学习线性代数速查
机器学习研究会
19+阅读 · 2018年2月25日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
17+阅读 · 2019年3月28日
VIP会员
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
机器学习线性代数速查
机器学习研究会
19+阅读 · 2018年2月25日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员