High-order accurate summation-by-parts (SBP) finite difference (FD) methods constitute efficient numerical methods for simulating large-scale hyperbolic wave propagation problems. Traditional SBP FD operators that approximate first-order spatial derivatives with central-difference stencils often have spurious unresolved numerical wave-modes in their computed solutions. Recently derived high order accurate upwind SBP operators based upwind FD stencils have the potential to suppress these poisonous spurious wave-modes on marginally resolved computational grids. In this paper, we demonstrate that not all high order upwind SBP FD operators are applicable. Numerical dispersion relation analysis shows that odd-order upwind SBP FD operators also support spurious unresolved high-frequencies on marginally resolved meshes. Meanwhile, even-order upwind SBP FD operators (of order 2, 4, 6) do not support spurious unresolved high frequency wave modes and also have better numerical dispersion properties. We discretise the three space dimensional (3D) elastic wave equation on boundary-conforming curvilinear meshes. Using the energy method we prove that the semi-discrete approximation is stable and energy-conserving. We derive a priori error estimate and prove the convergence of the numerical error. Numerical experiments for the 3D elastic wave equation in complex geometries corroborate the theoretical analysis. Numerical simulations of the 3D elastic wave equation in heterogeneous media with complex non-planar free surface topography are given, including numerical simulations of community developed seismological benchmark problems. Computational results show that even-order upwind SBP FD operators are more efficient, robust and less prone to numerical dispersion errors on marginally resolved meshes when compared to the odd-order upwind and traditional SBP FD operators.
翻译:高阶精确比对按部( SBP) 定值差异( FD) 方法是模拟大规模超双波波传播问题的高效数字方法。 传统的 SBP FD 操作员将一级空间衍生物与中度差异( stencils)相近,往往在计算解决方案中产生虚假的未解决数字波变式。 最近产生的高排序准确上风 SBP 操作员基于顺风 FD 定值( SBP) 定值( FD) 定值( FD) 方法有可能抑制这些有毒的虚假波动波变换式。 在本文中,我们显示,并非所有高端顺风 SBP D 非平流 FD 操作员都适用高端命令。 数值分布关系分析显示, 奇序上流 SBP FD 定值( 顺序 2 、 4 、 6 ) 调和 高频波变压模式( ) 也具有更好的数字分布特性。 我们将三个空间平流流( 3D) 的平流媒体结果分解成异。 Slodialal D 平流 平流的S- deal- dealalalalalalalalalal- messeralalalalalalalalalal 3 messalalalalalalalalalalalalalalalalal adal deal deal degildal degal degationalations 。 我们算算算算算算算算算出一个稳定平下, 我们证明了一种稳定的平基的平价基数的平下, 我们证明,我们算法前的平的平基的平基的平基的平基的平基的平基的平时, 。