In boundary element methods (BEM) in $\mathbb{R}^3$, matrix elements and right hand sides are typically computed via integration over line, triangle and tetrahedral volume elements. When the problem size gets large, the resulting linear systems are often solved iteratively via Krylov methods, with fast multipole methods (FMM) used to accelerate the matrix vector products needed. The integrals are often computed via numerical or analytical quadrature. When FMM acceleration is used, most entries of the matrix never need be computed explicitly - they are only needed in terms of their contribution to the multipole expansion coefficients. Furthermore, the two parts of this resulting algorithm - the integration and the FMM matrix vector product - are both approximate, and their errors have to be matched to avoid wasteful computations, or poorly controlled error. We propose a new fast method for generation of multipole expansion coefficients for the fields produced by the integration of the single and double layer potentials on surface triangles; charge distributions over line segments; and regular functions over tetrahedra in the volume; so that the overall method is well integrated into the FMM, with controlled error. The method is based on recursive computations of the multipole moments for $O(1)$ cost per moment with a low asymptotic constant. The method is developed for the Laplace Green's function in ${\mathbb R}^3$. The derived recursions are tested both for accuracy and performance.
翻译:在 $\ mathbb{R ⁇ 3$ 的边界要素方法( BEM) 中, 矩阵元素和右手边通常通过线条、 三角和四面体体积元素的集成来计算。 当问题规模大时, 产生的线性系统往往通过 Krylov 方法, 并用快速多极方法( FMMM) 迭代解决, 以加速所需的矩阵矢量产品。 集成通常通过数字或分析二次方块来计算。 当使用 FMM 加速时, 大多数矩阵条目都不需要明确计算 - 它们只是用其对多极扩张系数的贡献来计算 。 此外, 由此产生的算法的两个部分, 即集成和 FMMM 矩阵矢量产品产品, 两者的组合和 FMMM 矩阵产品, 都需要匹配, 以避免浪费计算, 或控制错误。 我们提出一个新的快速方法, 用于为通过将单层和双层潜力整合而生成的字段生成多极扩张系数; 由直线段进行分配; 以及量的正常函数; 因此, 整体方法与FMMDRMFMM3 的计算, 以固定的正值为固定的计算。