This paper introduces an unsupervised loss for training parametric deformation shape generators. The key idea is to enforce the preservation of local rigidity among the generated shapes. Our approach builds on an approximation of the as-rigid-as possible (or ARAP) deformation energy. We show how to develop the unsupervised loss via a spectral decomposition of the Hessian of the ARAP energy. Our loss nicely decouples pose and shape variations through a robust norm. The loss admits simple closed-form expressions. It is easy to train and can be plugged into any standard generation models, e.g., variational auto-encoder (VAE) and auto-decoder (AD). Experimental results show that our approach outperforms existing shape generation approaches considerably on public benchmark datasets of various shape categories such as human, animal and bone.
翻译:本文介绍了用于培训参数变形元件生成器的未经监督的损失。 关键的想法是强制保护生成的形状中的局部僵化性。 我们的方法建立在尽可能强的变形能量近似值上。 我们展示了如何通过亚光谱变形能源赫西安的光谱分解开发未受监督的损失。 我们的损失通过强健的规范形成并形成变异。 损失包含简单的封闭式表达式。 很容易培训, 并可以插入任何标准的生成模型, 如变异自动编码器( VAE) 和自动变形器(AD ) 。 实验结果显示, 我们的方法大大超越了现有形状生成方法, 大大超越了人类、 动物 和 骨骼等不同形状类别的公共基准数据集 。