Graph convolutional network (GCN) has been successfully applied to capture global non-consecutive and long-distance semantic information for text classification. However, while GCN-based methods have shown promising results in offline evaluations, they commonly follow a seen-token-seen-document paradigm by constructing a fixed document-token graph and cannot make inferences on new documents. It is a challenge to deploy them in online systems to infer steaming text data. In this work, we present a continual GCN model (ContGCN) to generalize inferences from observed documents to unobserved documents. Concretely, we propose a new all-token-any-document paradigm to dynamically update the document-token graph in every batch during both the training and testing phases of an online system. Moreover, we design an occurrence memory module and a self-supervised contrastive learning objective to update ContGCN in a label-free manner. A 3-month A/B test on Huawei public opinion analysis system shows ContGCN achieves 8.86% performance gain compared with state-of-the-art methods. Offline experiments on five public datasets also show ContGCN can improve inference quality. The source code will be released at https://github.com/Jyonn/ContGCN.


翻译:图卷积网络 (GCN) 已成功地应用于捕捉全局非连续和长距离语义信息以实现文本分类。然而,虽然基于 GCN 的方法在脱机评估中表现出了很大的潜力,但它们通常遵循一个已知标记-已知文档范式,通过构建一个固定的文档-标记图,不能对新文档进行推理。在线系统中将它们部署为推理数据流文本是一个挑战。在这项工作中,我们提出了一个连续 GCN 模型 (ContGCN) 来推广从观察到的文档推理到未观察到的文档。具体而言,我们提出了一个新的所有标记-任何文档范式,在在线系统的训练和测试阶段每个批次中动态更新文档-标记图。此外,我们设计了一个出现记忆模块和一个自监督对比学习目标,以无标签的方式更新 ContGCN。在华为舆情分析系统的三个月 A/B 测试中,ContGCN 相对于最先进的方法获得了 8.86% 的性能提升。在五个公共数据集上的脱机实验也表明,ContGCN 可以提高推理质量。源代码将在 https://github.com/Jyonn/ContGCN 上发布。

0
下载
关闭预览

相关内容

图卷积网络(简称GCN),由Thomas Kpif于2017年在论文Semi-supervised classification with graph convolutional networks中提出。它为图(graph)结构数据的处理提供了一个崭新的思路,将深度学习中常用于图像的卷积神经网络应用到图数据上。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
专知会员服务
20+阅读 · 2021年9月12日
专知会员服务
57+阅读 · 2021年1月26日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
96+阅读 · 2020年5月31日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
AAAI2020 图相关论文集
图与推荐
10+阅读 · 2020年7月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
4+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
5+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
12+阅读 · 2019年3月14日
Arxiv
24+阅读 · 2018年10月24日
Arxiv
12+阅读 · 2018年9月15日
VIP会员
相关资讯
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
AAAI2020 图相关论文集
图与推荐
10+阅读 · 2020年7月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
4+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
5+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员