End-to-end AutoML has attracted intensive interests from both academia and industry which automatically searches for ML pipelines in a space induced by feature engineering, algorithm/model selection, and hyper-parameter tuning. Existing AutoML systems, however, suffer from scalability issues when applying to application domains with large, high-dimensional search spaces. We present VolcanoML, a scalable and extensible framework that facilitates systematic exploration of large AutoML search spaces. VolcanoML introduces and implements basic building blocks that decompose a large search space into smaller ones, and allows users to utilize these building blocks to compose an execution plan for the AutoML problem at hand. VolcanoML further supports a Volcano-style execution model -- akin to the one supported by modern database systems -- to execute the plan constructed. Our evaluation demonstrates that, not only does VolcanoML raise the level of expressiveness for search space decomposition in AutoML, it also leads to actual findings of decomposition strategies that are significantly more efficient than the ones employed by state-of-the-art AutoML systems such as auto-sklearn. This paper is the extended version of the initial VolcanoML paper appeared in VLDB 2021.
翻译:终端到终端自动移动系统吸引了学术界和工业界的浓厚兴趣,它们自动在地貌工程、算法/模型选择和超参数调控所引发的空间中搜索ML管道。但是,现有的自动移动系统在应用具有大型、高维搜索空间的应用领域时会遇到可缩放问题。我们提出了可扩缩和可扩展的火山漂流框架,便于系统地探索大型自动移动搜索空间。VolcanoML引入并实施了将大型搜索空间分解成较小搜索空间的基本构件,并允许用户利用这些构件来制定手头自动流解问题执行计划。VolcanoML进一步支持火山式执行模式 -- -- 类似于现代数据库系统所支持的一种模式 -- -- 来实施所构建的计划。我们的评估表明,不仅VolcanoML提高了在自动流中搜索空间分解的清晰度,它还导致对拆解战略的实际发现,其效率大大高于诸如自动流动21号自动流转纸系统所使用的那些系统。这幅已扩展了20ML版本。