Inclusion of a term $-\gamma \nabla \nabla \cdot u$, forcing $\nabla \cdot u$ to be pointwise small, is an effective tool for improving mass conservation in discretizations of incompressible flows. However, the added grad-div term couples all velocity components, decreases sparsity and increases the condition number in the linear systems that must be solved every time step. To address these three issues various sparse grad-div regularizations and a modular grad-div method have been developed. We develop and analyze herein a synthesis of a fully decoupled, parallel sparse grad-div method of Guermond and Minev with the modular grad-div method. Let $G^{\ast }=-diag(\partial _{x}^{2},\partial _{y}^{2},\partial _{z}^{2})$ denote the diagonal of $% G=-\nabla \nabla \cdot $, and $\alpha \geq 0$\ an adjustable parameter. The 2-step method considered is \begin{eqnarray} 1 &:&\frac{\widetilde{u}^{n+1}-u^{n}}{k}+u^{n}\cdot \nabla \widetilde{u}^{n+1}+\nabla p^{n+1}-\nu \Delta \widetilde{u}^{n+1}=f\text{ & }\nabla \cdot \widetilde{u}^{n+1}=0,\\ 2 &:&\left[ \frac{1}{k}I+(\gamma +\alpha )G^{\ast }\right] u^{n+1}=\frac{1}{k }\widetilde{u}^{n+1}+\left[ (\gamma +\alpha )G^{\ast }-\gamma G\right] u^{n}. \end{eqnarray} The analysis also establishes that the method controls the persistent size of $\Vert \nabla \cdot u \Vert$ in general and controls the transients in $\Vert\nabla \cdot u\Vert$ for a cold start when $\alpha >0.5\gamma $. Consistent numerical tests are presented.
翻译:包含 $\ gamma\ nabla\ nabla\ cdot u$, 强制 $\ nabla\ cdot u$, 将 $\ abla, 以微小的分解方式改善质量保存。 然而, 添加的 grad- div 配对所有速度组件, 降低星度, 增加线性系统中每步必须解答的条件数。 为解决这三个问题, 已开发了各种分散的 grad- div规范 和模块化的 grad- div 方法。 我们在此开发并分析一个完全分解的、 平行的 Germon 和 Mine 的分解方法 。 让 $Gast+ diag (部分\ xx% 2},\ party2},\ 部分 ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇