A profound shift in the study of cosmology came with the discovery of thousands of exoplanets and the possibility of the existence of billions of them in our Galaxy. The biggest goal in these searches is whether there are other life-harbouring planets. However, the question which of these detected planets are habitable, potentially-habitable, or maybe even inhabited, is still not answered. Some potentially habitable exoplanets have been hypothesized, but since Earth is the only known habitable planet, measures of habitability are necessarily determined with Earth as the reference. Several recent works introduced new habitability metrics based on optimization methods. Classification of potentially habitable exoplanets using supervised learning is another emerging area of study. However, both modeling and supervised learning approaches suffer from drawbacks. We propose an anomaly detection method, the Multi-Stage Memetic Algorithm (MSMA), to detect anomalies and extend it to an unsupervised clustering algorithm MSMVMCA to use it to detect potentially habitable exoplanets as anomalies. The algorithm is based on the postulate that Earth is an anomaly, with the possibility of existence of few other anomalies among thousands of data points. We describe an MSMA-based clustering approach with a novel distance function to detect habitable candidates as anomalies (including Earth). The results are cross-matched with the habitable exoplanet catalog (PHL-HEC) of the Planetary Habitability Laboratory (PHL) with both optimistic and conservative lists of potentially habitable exoplanets.


翻译:宇宙学研究发生了深刻的变化,发现了成千上万的外行星,并有可能在银河系中存在数十亿的外行星。这些搜索的最大目标是,是否还有其他有生命危险的行星。然而,这些被探测到的行星中哪些行星是可居住、可居住或甚至有人居住的问题仍然没有得到解答。一些可能居住的外行星是虚小的,但是由于地球是唯一已知的可居住行星,因此必须用地球来确定可居住性测量标准。最近的一些工程采用了基于优化方法的新的可居住性测量标准。利用受监督的学习对潜在可居住外行星进行分类是另一个新出现的研究领域。然而,建模和受监督的学习方法都有倒退之处。我们提出了一种异常检测方法,即多层测量高光学高光谱(MSMA),以探测异常现象,将其扩展至一个不超强的组合算法(MSMMMMMCA),以便用它来检测可居住的可居住性直流数据作为异常。根据后地球的可使用算法进行可居住性测量性测量的可居住性测量性外行星测量数据。我们以可使用可移动的可移动的离式模型为一种反常态模型,其中的超常态数据,其中的超常态数据是具有可移动的超常态的超常态的超常态,而有可移动的超常态数据。

0
下载
关闭预览

相关内容

在数据挖掘中,异常检测(英语:anomaly detection)对不符合预期模式或数据集中其他项目的项目、事件或观测值的识别。通常异常项目会转变成银行欺诈、结构缺陷、医疗问题、文本错误等类型的问题。异常也被称为离群值、新奇、噪声、偏差和例外。 特别是在检测滥用与网络入侵时,有趣性对象往往不是罕见对象,但却是超出预料的突发活动。这种模式不遵循通常统计定义中把异常点看作是罕见对象,于是许多异常检测方法(特别是无监督的方法)将对此类数据失效,除非进行了合适的聚集。相反,聚类分析算法可能可以检测出这些模式形成的微聚类。 有三大类异常检测方法。[1] 在假设数据集中大多数实例都是正常的前提下,无监督异常检测方法能通过寻找与其他数据最不匹配的实例来检测出未标记测试数据的异常。监督式异常检测方法需要一个已经被标记“正常”与“异常”的数据集,并涉及到训练分类器(与许多其他的统计分类问题的关键区别是异常检测的内在不均衡性)。半监督式异常检测方法根据一个给定的正常训练数据集创建一个表示正常行为的模型,然后检测由学习模型生成的测试实例的可能性。
专知会员服务
33+阅读 · 2021年9月16日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
异常检测(Anomaly Detection)综述
极市平台
20+阅读 · 2020年10月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Few-shot Scene-adaptive Anomaly Detection
Arxiv
8+阅读 · 2020年7月15日
Arxiv
26+阅读 · 2020年2月21日
Augmentation for small object detection
Arxiv
11+阅读 · 2019年2月19日
Arxiv
7+阅读 · 2018年12月5日
Zero-Shot Object Detection
Arxiv
9+阅读 · 2018年7月27日
Arxiv
7+阅读 · 2018年3月19日
VIP会员
相关VIP内容
专知会员服务
33+阅读 · 2021年9月16日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
异常检测(Anomaly Detection)综述
极市平台
20+阅读 · 2020年10月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Few-shot Scene-adaptive Anomaly Detection
Arxiv
8+阅读 · 2020年7月15日
Arxiv
26+阅读 · 2020年2月21日
Augmentation for small object detection
Arxiv
11+阅读 · 2019年2月19日
Arxiv
7+阅读 · 2018年12月5日
Zero-Shot Object Detection
Arxiv
9+阅读 · 2018年7月27日
Arxiv
7+阅读 · 2018年3月19日
Top
微信扫码咨询专知VIP会员